LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Intracellular photocatalytic-proximity labeling for profiling protein-protein interactions in microenvironments.

Photo from wikipedia

Intracellular photocatalytic-proximity labeling (iPPL) was developed to profile protein-protein interactions in the microenvironment of living cells. Acriflavine was found to be an efficient cell-membrane-permeable photocatalyst for introduction into the genetically… Click to show full abstract

Intracellular photocatalytic-proximity labeling (iPPL) was developed to profile protein-protein interactions in the microenvironment of living cells. Acriflavine was found to be an efficient cell-membrane-permeable photocatalyst for introduction into the genetically HaloTag-fused protein of interest for iPPL with a radical labeling reagent, 1-methyl-4-arylurazole. iPPL was applied to the histone-associated protein H2B in HaloTag-H2B expressing HEK293FT cells. The proteins directly interacting with histones and RNA-binding proteins were selectively labeled in the intracellular environment, suggesting that the iPPL method has a smaller labeling radius (CA. 6 nm) than the BioID and APEX methods.

Keywords: protein protein; intracellular photocatalytic; protein interactions; photocatalytic proximity; proximity labeling

Journal Title: Chemical communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.