LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bisulfate as a redox-active ligand in vanadium-based electrocatalysis for CH4 functionalization.

Photo from wikipedia

The roles of unforgiving H2SO4 solvent in CH4 activation with molecular catalysts have not been experimentally well-illustrated despite computational predictions. Here, we provide experimental evidence that metal-bound bisulfate ligand introduced… Click to show full abstract

The roles of unforgiving H2SO4 solvent in CH4 activation with molecular catalysts have not been experimentally well-illustrated despite computational predictions. Here, we provide experimental evidence that metal-bound bisulfate ligand introduced by H2SO4 solvent is redox-active in vanadium-based electrocatalytic CH4 activation discovered recently. Replacing one of the two terminal bisulfate ligands with redox-inert dihydrogen phosphate in the pre-catalyst vanadium (V)-oxo dimer completely quenches its activity towards CH4, which may inspire environmentally benign catalysis with minimal use of H2SO4.

Keywords: vanadium; redox active; ch4; bisulfate; ligand; vanadium based

Journal Title: Chemical communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.