LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Copper(I) activation of C-X bonds: bimolecular vs. unimolecular reaction mechanism.

Photo by kdghantous from unsplash

Experimental kinetic studies and DFT calculations show that the oxidative addition of aryl halides (Ar-X) to complexes [Cu(NHC)R] follow different paths depending on the nature of X. For X =… Click to show full abstract

Experimental kinetic studies and DFT calculations show that the oxidative addition of aryl halides (Ar-X) to complexes [Cu(NHC)R] follow different paths depending on the nature of X. For X = Br a concerted addition leads to cis-[Cu(NHC)XRAr] from which the usual C-C coupled product Ar-R eliminates. However, for X = I trans-[Cu(NHC)IRAr] is formed instead, leading to the elimination of R-I in a metathesis reaction. This behaviour is accounted for by a change in the reaction mechanism for Ar-I, which involves two molecules of copper(I) complex, the second one stabilising the incipient iodide formed in the C-I breaking (oxidative addition) and C-I forming (reductive elimination) processes.

Keywords: copper activation; reaction; reaction mechanism; bonds bimolecular; activation bonds

Journal Title: Chemical communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.