LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Catalytic self-transfer hydrogenolysis of lignin with endogenous hydrogen: road to the carbon-neutral future.

Photo from wikipedia

Due to the depletion of fossil sources, it is imperative to develop a sustainable and carbon-neutral biorefinery for supporting the fuel and chemical supply in modern society. Lignin, the only… Click to show full abstract

Due to the depletion of fossil sources, it is imperative to develop a sustainable and carbon-neutral biorefinery for supporting the fuel and chemical supply in modern society. Lignin, the only renewable aromatic source, is still an underutilized component in lignocellulose. Very recently, it has been found that hydrogenolysis is a promising technology for lignin valorization. However, high-pressure H2 is necessary during lignin hydrogenolysis, resulting in safety problems. Furthermore, H2 is mainly produced from steam reforming of fossil sources in industry, which makes the conversion of renewable lignin unsustainable and costly. Plentiful aliphatic hydroxyl and methoxy groups exist in native lignin and offer a renewable alternative to H2, and can be hydrogen sources for the depolymerization and upgradation of lignin via the intramolecular catalytic transfer hydrogenation. The hydrogen source in situ generated from lignin is a type of green hydrogen, decreasing the carbon footprint. The purpose of this review is to provide a summary and perspective of lignin valorization via self-transfer hydrogenolysis, mainly focusing on a comprehensive understanding of the mechanism of catalytic self-transfer hydrogenolysis at the molecular level and developing highly effective catalytic systems. Moreover, some opportunities and challenges within this attractive field are given to discuss future research directions.

Keywords: lignin; hydrogen; transfer hydrogenolysis; self transfer; hydrogenolysis

Journal Title: Chemical Society reviews
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.