LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Selectivity-tunable oxidation of tetrahydro-β-carboline over an OMS-2 composite catalyst: preparation and catalytic performance.

Photo from wikipedia

Controlling the reaction selectivity of organic transformations without losing high conversion is always a challenge in catalytic processes. In this work, a H3PO4·12WO3/OMS-2 nanocomposite catalyst ([PW]-OMS-2) was prepared through the… Click to show full abstract

Controlling the reaction selectivity of organic transformations without losing high conversion is always a challenge in catalytic processes. In this work, a H3PO4·12WO3/OMS-2 nanocomposite catalyst ([PW]-OMS-2) was prepared through the oxidation of a Mn(ii) salt with sodium phosphotungstate by KMnO4. Comprehensive characterization indicates that different Mn2+ precursors significantly affected the crystalline phase and morphology of the as-synthesized catalysts and only MnSO4·H2O as the precursor could lead to a cryptomelane phase. Moreover, [PW]-OMS-2 demonstrated excellent catalytic activity toward aerobic oxidative dehydrogenation of tetrahydro-β-carbolines due to mixed crystalline phases, enhanced surface areas, rich surface oxygen vacancies and labile lattice oxygen species. In particular, β-carbolines and 3,4-dihydro-β-carbolines could be obtained from tetrahydro-β-carbolines with very high selectivity (up to 99%) over [PW]-OMS-2 via tuning the reaction solvent and temperature. Under the present catalytic system, scalable synthesis of a β-carboline was achieved and the composite catalyst showed good stability and recyclability. This work not only clarified the structure-activity relationship of the catalyst, but also provided a practical pathway to achieve flexible, controllable synthesis of functional N-heterocycles.

Keywords: composite catalyst; oxidation; tetrahydro; carboline; catalyst; selectivity

Journal Title: Dalton transactions
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.