LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Variable electronic structure and spin distribution in bis(2,2'-bipyridine)-metal complexes (M = Ru or Os) of 4,5-dioxido- and 4,5-diimido-pyrene.

Photo from wikipedia

The odd-electron compounds [M(bpy)2(L1)](ClO4) M = Ru ([1](ClO4)) or Os ([2](ClO4)), and the even-electron species [M(bpy)2(H2L2)](ClO4)2, M = Ru ([3](ClO4)2) or Os ([4](ClO4)2) were obtained from pyrene-4,5-dione, L1, or 4,5-diaminopyrene,… Click to show full abstract

The odd-electron compounds [M(bpy)2(L1)](ClO4) M = Ru ([1](ClO4)) or Os ([2](ClO4)), and the even-electron species [M(bpy)2(H2L2)](ClO4)2, M = Ru ([3](ClO4)2) or Os ([4](ClO4)2) were obtained from pyrene-4,5-dione, L1, or 4,5-diaminopyrene, H4L2, and were characterised structurally, electrochemically and spectroscopically. Experimental and computational analysis (TD-DFT) revealed rather different electronic structures and spin distributions of the paramagnetic monocations 1+-4+. EPR investigations and electronic absorption studies exhibit increasing metal contributions to the singly occupied MO along the series 1+ < 3+ < 4+ < 2+, illustrated by g value and long-wavelength absorbance. In addition to variations of the metal (Ru,Os) and the donor atoms (O,NH) the extension of the π system of the semiquinone-type ligand has a large effect on the electronic structure of the paramagnetic cations.

Keywords: metal; electronic structure; clo4 clo4; variable electronic

Journal Title: Dalton transactions
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.