LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A highly sensitive "ON-OFF-ON" dual optical sensor for the detection of Cu(II) ion and triazole pesticides based on novel BODIPY-substituted cavitand.

Photo by macroman from unsplash

The synthesis with full structural characterization including elemental analysis and 1H, 13C, 11B and 19F NMR, FT-IR and MALDI-TOF spectral data, along with the florescence sensing behavior of a new… Click to show full abstract

The synthesis with full structural characterization including elemental analysis and 1H, 13C, 11B and 19F NMR, FT-IR and MALDI-TOF spectral data, along with the florescence sensing behavior of a new resorcin[4]arene cavitand 3 bearing multiple BODIPY sites achieved by the Cu-catalyzed azide-alkyne cycloaddition (CuAAC) is being reported. The spatial orientation of multiple BODIPY-1,2,3-triazole arms based on the macrocyclic rigid core is of great interest since the resulting structure has been utilized as a fluorescent chemosensor for numerous metal cations. In particular, a remarkable decrease in the fluorescence emission towards Cu(ii) ions, i.e., "turn-off" response, has been obtained giving rise to an optical sensor for the detection of triazole fungicides, namely tebuconazole, triadimenol, triadimefon, i.e. "turn-on" response. Such a molecular system, hence, can be feasibly applied as a dual optical sensor, i.e. "a turn-on-off-on" system, for dangerous contaminants such as heavy metals and pesticides.

Keywords: triazole; sensor detection; optical sensor; dual optical; cavitand

Journal Title: Dalton transactions
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.