LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sulfur doped FeOx nanosheet arrays supported on nickel foam for efficient alkaline seawater splitting.

Photo from wikipedia

Developing economical, efficient and stable bifunctional catalysts for hydrogen production from seawater is of great significance for hydrogen utilization. Herein, sulfur doped iron oxide nanosheet arrays supported on nickel foam… Click to show full abstract

Developing economical, efficient and stable bifunctional catalysts for hydrogen production from seawater is of great significance for hydrogen utilization. Herein, sulfur doped iron oxide nanosheet arrays supported on nickel foam (FeOx-Ni3S2@NF) are prepared by a one-pot solvothermal reaction. Owing to the high intrinsic activity of FeOx-Ni3S2, the large catalytic specific surface area of nanosheet arrays and the fast charge transportation capability achieved by the self-supporting configuration, the FeOx-Ni3S2@NF electrode delivers excellent catalytic performance in alkaline simulated seawater (1 M KOH + 0.5 M NaCl). Impressively, a low overpotential of 120 mV at 50 mA cm-2 with a Tafel slope of 57 mV dec-1 for the hydrogen evolution reaction and an overpotential of 470 mV at 200 mA cm-2 with a Tafel slope of 62 mV dec-1 for the oxygen evolution reaction are achieved. More importantly, the voltage is only 1.5 V at 50 mA cm-2 for continuous overall water splitting for 100 h at 200 mA cm-2 with negligible decay in alkaline simulated seawater with almost 100% Faraday efficiency. This work provides a simple and universal strategy to prepare highly efficient bifunctional catalytic materials, promoting the development of Earth-abundant materials to catalyse seawater splitting to produce high-purity hydrogen.

Keywords: seawater; supported nickel; alkaline; sulfur doped; nanosheet arrays; arrays supported

Journal Title: Dalton transactions
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.