LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Al-MOF-derived spindle-like hierarchical porous activated carbon for advanced supercapacitors.

Photo by armandoascorve from unsplash

Metal organic frameworks (MOFs) and their derivatives have been widely used in electrochemistry due to their adjustable pore size and high specific surface area (SSA). Herein, a spindle-like hierarchical porous… Click to show full abstract

Metal organic frameworks (MOFs) and their derivatives have been widely used in electrochemistry due to their adjustable pore size and high specific surface area (SSA). Herein, a spindle-like hierarchical porous activated carbon (SPC) was synthesized through carbonizing the Al-BTEC precursor and then alkaline washing with NaOH. The fabricated SPC has a uniform shuttle-shaped structure, showing a large BET surface area of 1895 m2 g-1 and an average pore size of 2.4 nm. The SPC product displays a high specific capacitance (SC) of 337 F g-1 at 1 mV s-1 and 334 F g-1 at 1 A g-1. The retention of SC is about 95% after 100 000 cycles when the current density is 50 A g-1, indicating its excellent stability. Furthermore, the assembled symmetrical capacitor with a two-electrode system exhibits a high SC of 173 F g-1 at 1 A g-1 and an energy density of 15.3 W h kg-1 at a power density of 336 W kg-1. This work would provide a new pathway to design and synthesize carbon materials for supercapacitors with excellent properties in the future.

Keywords: hierarchical porous; carbon; activated carbon; porous activated; spindle like; like hierarchical

Journal Title: Dalton transactions
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.