LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reactivity of molybdenum-nitride complex bearing pyridine-based PNP-type pincer ligand toward carbon-centered electrophiles.

Photo by florenciapotter from unsplash

A molybdenum-nitride complex bearing a pyridine-based PNP-type pincer ligand derived from dinitrogen is reacted with various kinds of carbon-centered electrophiles to functionalize the nitride ligand in the molybdenum complex. Methylation… Click to show full abstract

A molybdenum-nitride complex bearing a pyridine-based PNP-type pincer ligand derived from dinitrogen is reacted with various kinds of carbon-centered electrophiles to functionalize the nitride ligand in the molybdenum complex. Methylation with MeOTf and acylation with diphenylacetyl chloride of the nitride complex afford the corresponding imide complexes via a carbon-nitrogen bond formation. In the case of reactions with phenylisocyanate and diphenylketene, the PNP ligand works as a non-innocent ligand to form the corresponding ureate and acylimide complexes, respectively. These newly synthesized complexes are characterized by X-ray analysis. As a further transformation of the prepared imide complexes, hydrolysis of the molybdenum-acylimide complex proceeds to give the corresponding amide as an organonitrogen compound together with the corresponding molybdenum-oxo complex. This result indicates that the nitrogen molecule is converted into organic amide mediated by the molybdenum-nitride complex.

Keywords: carbon; nitride complex; molybdenum; pnp; molybdenum nitride; complex bearing

Journal Title: Dalton transactions
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.