LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Intermediate-spin iron(IV)-oxido species with record reactivity.

Photo by eriic from unsplash

The nonheme iron(IV)-oxido complex trans-N3-[(L1)FeIVO(Cl)]+, where L1 is a derivative of the tetradentate bispidine 2,4-di(pyridine-2-yl)-3,7-diazabicyclo[3.3.1]nonane-1-one, has an S = 1 electronic ground state and is the most reactive nonheme iron… Click to show full abstract

The nonheme iron(IV)-oxido complex trans-N3-[(L1)FeIVO(Cl)]+, where L1 is a derivative of the tetradentate bispidine 2,4-di(pyridine-2-yl)-3,7-diazabicyclo[3.3.1]nonane-1-one, has an S = 1 electronic ground state and is the most reactive nonheme iron model system known so far, of a similar order of reactivity as nonheme iron enzymes (C-H abstraction of cyclohexane, -90 °C (propionitrile), t1/2 = 3.5 s). The reaction with cyclohexane selectively leads to chlorocyclohexane, but "cage escape" at the [(L1)FeIII(OH)(Cl)]+/cyclohexyl radical intermediate lowers the productivity. Ligand field theory is used herein to analyze the d-d transitions of [(L1)FeIVO(X)]n+ (X = Cl-, Br-, MeCN) in comparison with the thoroughly characterized ferryl complex of tetramethylcyclam (TMC = L2; [(L2)FeIVO(MeCN)]2+). The ligand field parameters and d-d transition energies are shown to provide important information on the triplet-quintet gap and its correlation with oxidation reactivity.

Keywords: iron; nonheme iron; intermediate spin; reactivity; iron oxido

Journal Title: Faraday discussions
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.