LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The transfer and amplification of cyanostilbene molecular function to advanced flexible optical paints through self-crosslinkable side-chain liquid crystal polysiloxanes.

Photo by pavel_kalenik from unsplash

A self-crosslinkable side-chain liquid crystal polysiloxane containing cyanostilbene (Si-CSM) was newly synthesized for the development of a new generation of flexible optical paints. The photoisomerization of the cyanostilbene moiety at… Click to show full abstract

A self-crosslinkable side-chain liquid crystal polysiloxane containing cyanostilbene (Si-CSM) was newly synthesized for the development of a new generation of flexible optical paints. The photoisomerization of the cyanostilbene moiety at the molecular level was transferred and amplified to the phase transition of Si-CSM, resulting in changes in the macroscopic optical properties of the Si-CSM thin film. The self-crosslinking reaction between Si-H groups in the Si-CSM polymer backbone caused the self-crosslinked Si-CSM thin film to be very elastic and both thermally and chemically stable. Therefore, the self-crosslinked Si-CSM thin film endured stretching and bending deformations under relatively harsh conditions. In addition, the uniaxially oriented and self-crosslinked Si-CSM thin film generated linearly polarized light emission. Polarization-dependent and photopatternable secret coatings were fabricated via a spontaneous self-crosslinking reaction after coating the Si-CSM paint and irradiating ultraviolet (UV) light through a photomask. This newly developed flexible optical Si-CSM paint can be applied in next-generation optical coatings.

Keywords: cyanostilbene; flexible optical; crosslinkable side; self crosslinkable; csm; self

Journal Title: Materials horizons
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.