LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interlayer exciton emission in a MoS2/VOPc inorganic/organic van der Waals heterostructure.

Photo from wikipedia

Heterostructures built from two-dimensional (2D) materials and organic semiconductors offer a unique platform for addressing many fundamental physics and construction of functional devices by taking advantage of both the 2D… Click to show full abstract

Heterostructures built from two-dimensional (2D) materials and organic semiconductors offer a unique platform for addressing many fundamental physics and construction of functional devices by taking advantage of both the 2D materials and organic semiconductors. We report interlayer exciton emission in the near infrared range around 1.54 eV (∼805 nm) from the heterostructure of pyramidal VOPc (p-type) and transition metal dichalcogenide monolayer MoS2 (VOPc/MoS2). This contrasts the observation of photoluminescence (PL) from the SnCl2Pc/MoS2 heterostructure despite both being type-II heterostructures. We attribute the exciton emission to the carrier transition from the generated interface mid-gap states of VOPc to the ground states of MoS2 in the heterostructure system as predicted from density functional theory (DFT) calculations. Furthermore, the observed PL signal of the VOPc/MoS2 heterostructure shows blue shift, while the PL peak of the SnCl2Pc/MoS2 heterostructure shows red shift. Our finding opens up a new avenue to tune the optoelectronic properties of the van der Waals heterojunctions consisting of 2D materials and organic semiconductors for optoelectronic applications.

Keywords: interlayer exciton; mos2; exciton emission; heterostructure; vopc

Journal Title: Materials horizons
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.