LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Intrinsic carbon nanotube liquid crystalline elastomer photoactuators for high-definition biomechanics.

Photo from wikipedia

Photoresponsive soft actuators with the unique merits of flexibility, contactless operation, and remote control have huge potential in technological applications of bionic robotics and biomedical devices. Herein, a facile strategy… Click to show full abstract

Photoresponsive soft actuators with the unique merits of flexibility, contactless operation, and remote control have huge potential in technological applications of bionic robotics and biomedical devices. Herein, a facile strategy was proposed to prepare an intrinsically-photoresponsive elastomer by chemically grafting carbon nanotubes (CNTs) into a thermally-sensitive liquid-crystalline elastomer (LCE) network. Highly effective dispersion and nematic orientation of CNTs in the intrinsic LCE matrix were observed to yield anchoring energies ranging from 1.65 × 10-5 J m-2 to 5.49 × 10-7 J m-2, which significantly enhanced the mechanical and photothermal properties of the photoresponsive elastomer. When embedding an ultralow loading of CNTs (0.1 wt%), the tensile strength of the LCE increased by 420% to 13.89 MPa (||) and 530% to 3.94 MPa (⊥) and exhibited a stable response to repeated alternating cooling and heating cycles, as well as repeated UV and infrared irradiation. Furthermore, the shape transformation, locomotion, and photo-actuation capabilities allow the CNT/LCE actuator to be applied in high-definition biomechanical applications, such as phototactic flowers, serpentine robots and artificial muscles. This design strategy may provide a promising method to manufacture high-precision, remote-control smart devices.

Keywords: crystalline elastomer; high definition; carbon; elastomer; liquid crystalline; biomechanics

Journal Title: Materials horizons
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.