The electrochemical CO2 reduction reaction (ECO2RR) driven by renewable electricity holds promise to store intermittent energy in chemical bonds, while producing value-added chemicals and fuels sustainably. Unfortunately, it remains a… Click to show full abstract
The electrochemical CO2 reduction reaction (ECO2RR) driven by renewable electricity holds promise to store intermittent energy in chemical bonds, while producing value-added chemicals and fuels sustainably. Unfortunately, it remains a grand challenge to simultaneously achieve a high faradaic efficiency (FE), a low overpotential, and a high current density of the ECO2RR. Herein, we report the synthesis of heterostructured Bi-Cu2S nanocrystals via a one-pot solution-phase method. The epitaxial growth of Cu2S on Bi leads to abundant interfacial sites and the resultant heterostructured Bi-Cu2S nanocrystals enable highly efficient ECO2RR with a largely reduced overpotential (240 mV lower than that of Bi), a near-unity FE (>98%) for formate production, and a high partial current density (2.4- and 5.2-fold higher JHCOO- than Cu2S and Bi at -1.0 V vs. reversible hydrogen electrode, RHE). Density functional theory (DFT) calculations show that the electron transfer from Bi to Cu2S at the interface leads to the preferential stabilization of the formate-evolution intermediate (*OCHO).
               
Click one of the above tabs to view related content.