LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exploring the mechanical properties of nanometer-thick elastic films through micro-drop impinging on large-area suspended graphene.

Photo from wikipedia

In this work, the dependence of effective Young's modulus on the thickness of suspended graphene was confirmed through a drop impingement method. Large area suspended graphene (LSG) layers with a… Click to show full abstract

In this work, the dependence of effective Young's modulus on the thickness of suspended graphene was confirmed through a drop impingement method. Large area suspended graphene (LSG) layers with a diameter of up to 400 μm and a nanometer thickness were prepared through transferring chemical vapor deposition grown graphene from copper substrates. 4, 8, and 12-layer LSG samples were found to be crumpled yet defect-free. The mechanical properties of LSG were first studied by observing its interaction with impinging droplets from an ink-jet nozzle. First, the effective Young's modulus was calculated by fitting the instant deformation captured by high speed photography within microseconds. Next, droplets deposited on LSG caused deformation and generated wrinkles and the effective Young's modulus was calculated from the number of wrinkles. The above methods yielded effective Young's modulus values ranging from 0.3 to 3.4 TPa. The results from these methods all indicated that the effective Young's modulus increases with the decreasing thickness or size of suspended graphene layers. Moreover, the crumpled LSG yields higher effective Young's modulus than ideal flat graphene. These comprehensive results from complementary methodologies with precise LSG thickness control down to the nanometer scale provide good evidence to resolve the debate on the thickness dependence of mechanical strength for LSG.

Keywords: graphene; suspended graphene; young modulus; effective young; thickness

Journal Title: Nanoscale
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.