LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancing deep-UV emission at 234 nm by introducing a truncated pyramid AlN/GaN nanostructure with fine-tuned multiple facets.

Photo by laukev from unsplash

The external quantum efficiency of a high-Al content (>0.6) AlGaN deep-ultraviolet (DUV) light-emitting diode is typically below 1% in the sub-250 nm wavelength range. One of the main reasons for… Click to show full abstract

The external quantum efficiency of a high-Al content (>0.6) AlGaN deep-ultraviolet (DUV) light-emitting diode is typically below 1% in the sub-250 nm wavelength range. One of the main reasons for this low efficiency is the fundamental properties of high-Al content AlGaN comprising the transverse-magnetic (TM)-dominant emission and low light extraction due to the total internal reflection (TIR). This work demonstrates a truncated pyramid nanostructure with fine-tuned multiple facets in an (AlN)8/(GaN)2 digital alloy to achieve highly efficient DUV emission at 234 nm. By applying nanoimprint lithography, dry and wet etching, a hexagonal truncated pyramid nanohole structure is fabricated featuring multiple crystal facets of (0001), (10-13), and (20-21) planes. These fine-tuned multiple facets act as reflecting mirrors that can effectively modulate the light propagation and extraction patterns to overcome the TIR via multiple reflections and enhanced scattering. Consequently, significant light extraction enhancements of 5.6 times and 1.1 times for TM and transverse-electric emissions are achieved in the truncated pyramid nanohole structure, respectively. The total luminous intensity of this unique nanostructure is greatly increased by 191% compared to that of a conventional planar structure. The truncated pyramid AlN/GaN nanostructure with fine-tuned multiple facets used in this work provides a promising approach for realizing highly efficient sub-250 nm DUV light-emitting devices.

Keywords: nanostructure fine; truncated pyramid; aln gan; fine tuned; multiple facets; tuned multiple

Journal Title: Nanoscale
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.