Flexible regulation of chirality and handedness of chiral functional materials and quantitative sensing of natural chiral compounds remains a considerable challenge. Herein, an achiral fluorescent 1-pyrenecarboxylic acid-benzimidazole derivative (PBI) was… Click to show full abstract
Flexible regulation of chirality and handedness of chiral functional materials and quantitative sensing of natural chiral compounds remains a considerable challenge. Herein, an achiral fluorescent 1-pyrenecarboxylic acid-benzimidazole derivative (PBI) was synthesized and its chiroptical properties upon coassembly with chiral acids (TA and MA) and octafluoronaphthalene (OFN) through hydrogen bonds between benzimidazole and chiral acids as well as an arene-perfluoroarene (AP) interaction between a pyrene moiety and OFN were systemically studied. The binary assemblies of PBI/TA and PBI/MA displayed opposite chiroptical properties including circular dichroism (CD) and circularly polarized luminescence (CPL) signals. Interestingly, the handedness of CPL was further inverted in ternary assemblies due to the synergistic effect of the AP interaction and hydrogen bonds. Besides, the highly accurate chiral sensing of chiral acids via binary assemblies was successfully achieved with a high correlation coefficient. This work provides a simple method for regulating the handedness of chiroptical active materials and quantitative sensing of chiral acids through orthogonal multiple component coassemblies.
               
Click one of the above tabs to view related content.