LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Zero Poisson's ratio in single-layer arsenic.

Zero (or near-zero) Poisson's ratio (ZPR) materials have important applications in the field of precision instruments because one of their faces is stable and will not be affected by strain.… Click to show full abstract

Zero (or near-zero) Poisson's ratio (ZPR) materials have important applications in the field of precision instruments because one of their faces is stable and will not be affected by strain. However, ZPR materials are extremely rare. Here, we report a novel ZPR material, two-dimensional P2/m arsenene, by first principles calculations. Its Poisson's ratio is -0.00021 (strain along zigzag direction), which is smaller than all the known near-zero Poisson's ratio crystal materials, and even 10 times smaller than Me-graphene (0.002). This feature makes it have huge potential applications in the field of precision instruments such as aviation, medicine, and flexible electronic devices. Besides, the band-gap range of P2/m arsenene is 1.420-2.154 eV (the corresponding wavelength is 873-575 nm) under strain from -5% to 5% along the zigzag direction, which is suitable for infrared and visible optoelectronic devices.

Keywords: poisson ratio; zero poisson; ratio single; single layer

Journal Title: Nanoscale
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.