LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced Raman scattering on two-dimensional palladium diselenide.

Photo from wikipedia

Two-dimensional (2D) semiconductors with atomic layers, and a flat and active surface provide an attractive platform for the study of surface-enhanced Raman scattering (SERS). Many 2D layered materials, including graphene… Click to show full abstract

Two-dimensional (2D) semiconductors with atomic layers, and a flat and active surface provide an attractive platform for the study of surface-enhanced Raman scattering (SERS). Many 2D layered materials, including graphene and transition metal dichalcogenide (TMD), have been exploited as potential Raman enhancers for SERS-based molecule sensing. Herein, atomically-thin palladium diselenide (PdSe2) used as a SERS substrate for molecule detection was systematically studied. Stable Raman enhancement for molecules such as rhodamine 6G (R6G), crystal violet (CV), and rhodamine B (RhB) on few-layer PdSe2 has been verified. A detection limit as low as 10-9 M and an enhancement factor of 105 for the R6G molecule on monolayer PdSe2 are achieved. With the insertion of a thin Al2O3 layer, the Raman spectra confirm the predominant charge transfer mechanism for the large Raman enhancement. Furthermore, the strong thickness-dependent properties, good in-plane anisotropy and excellent air-stability of Raman enhancement are also explored for 2D PdSe2. Our findings provide not only a promising Raman enhancement platform for sensing applications but also new insights into the chemical mechanism (CM) process of SERS.

Keywords: two dimensional; raman scattering; raman enhancement; enhanced raman; palladium diselenide

Journal Title: Nanoscale
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.