LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultralong recovery time in nanosecond electroporation systems enabled by orientational-disordering processes.

Photo by jontyson from unsplash

The growing importance of applications based on molecular medicine and genetic engineering is driving the need to develop high-performance electroporation technologies. The electroporation phenomenon involves disruption of the cell for… Click to show full abstract

The growing importance of applications based on molecular medicine and genetic engineering is driving the need to develop high-performance electroporation technologies. The electroporation phenomenon involves disruption of the cell for increasing membrane permeability. Although there is a multitude of research focused on exploring new electroporation techniques, the engineering of programming schemes suitable for these electroporation methods remains a challenge. Nanosecond stimulations could be promising candidates for these techniques owing to their ability to generate a wide range of biological responses. Here we control the membrane permeabilization of cancer cells using different numbers of electric-field pulses through orientational disordering effects. We then report our exploration of a few-volt nanosecond alternating-current (AC) stimulation method with an increased number of pulses for developing electroporation systems. A recovery time of ∼720 min was achieved, which is above the average of ∼76 min for existing electroporation methods using medium cell populations, as well as a previously unreported increased conductance with an increase in the number of pulses using weak bias amplitudes. All-atom molecular dynamics (MD) simulations reveal the orientation-disordering-facilitated increase in the degree of permeabilization. These findings highlight the potential of few-volt nanosecond AC-stimulation with an increased number of pulse strategies for the development of next-generation low-power electroporation systems.

Keywords: recovery time; orientational disordering; electroporation systems; electroporation

Journal Title: Nanoscale
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.