LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spin defects in hexagonal boron nitride for strain sensing on nanopillar arrays.

Photo from wikipedia

Two-dimensional hexagonal boron nitride (hBN) has attracted much attention as a platform for studies of light-matter interactions at the nanoscale, especially in quantum nanophotonics. Recent efforts have focused on spin… Click to show full abstract

Two-dimensional hexagonal boron nitride (hBN) has attracted much attention as a platform for studies of light-matter interactions at the nanoscale, especially in quantum nanophotonics. Recent efforts have focused on spin defects, specifically negatively charged boron vacancy (VB-) centers. Here, we demonstrate a scalable method to enhance the VB- emission using an array of SiO2 nanopillars. We achieve a 4-fold increase in photoluminescence (PL) intensity, and a corresponding 4-fold enhancement in optically detected magnetic resonance (ODMR) contrast. Furthermore, the VB- ensembles provide useful information about the strain fields associated with the strained hBN at the nanopillar sites. Our results provide an accessible way to increase the emission intensity as well as the ODMR contrast of the VB- defects, while simultaneously form a basis for miniaturized quantum sensors in layered heterostructures.

Keywords: boron nitride; nitride strain; boron; spin defects; defects hexagonal; hexagonal boron

Journal Title: Nanoscale
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.