Since the discovery of penta-graphene, two-dimensional (2-D) pentagonal-structured materials have been highly expected to have desirable performance because of their unique structures and accompanied physical properties. Hence, based on the… Click to show full abstract
Since the discovery of penta-graphene, two-dimensional (2-D) pentagonal-structured materials have been highly expected to have desirable performance because of their unique structures and accompanied physical properties. Hence, based on the first-principles calculations, we performed a systematical study on the structure, stability, mechanical and electronic properties, and potential applications on carbon-based pentagonal materials with binary compositions, namely, Penta-CnX6-n (n = 1, 2, 4, 5; X = B, N, Al, Si, P, Ga, Ge, As). We found that eleven out of thirty-two Penta-CnX6-n have good stability and can be further studied. Among them, two materials, namely, Penta-C4P2 and Penta-C5P are metallic, and others are indirect band gap semiconductors, whose band gaps calculated by the HSE06 functional are in the range of 1.37-6.43 eV, covering the infrared-visible-ultraviolet regions. Furthermore, we found that metallic Penta-CnX6-n can become promising anode materials for Na-ion batteries (NIBs) with high storage capacity, while some semiconducting Penta-CnX6-n can become excellent water splitting photocatalysts. In addition, Penta-C4P2 and Penta-C2Al4 were found to have obvious in-plane negative Poisson's ratio (NPR) of -0.083 and -0.077, respectively. More interestingly, we found that Penta-C2Al4 exhibits a peculiar in-plane half negative Poisson's ratio (H-NPR) with the fundamental mechanism clarified. These outstanding performances endow binary pentagonal materials with excellent application prospects.
               
Click one of the above tabs to view related content.