LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Defective 2D silicon phosphide monolayers for the nitrogen reduction reaction: a DFT study.

Photo by aleexcif from unsplash

Electroreduction of N2 is a highly promising route for NH3 production. The lack of efficient catalysts that can activate and then reduce N2 into NH3 limits this as a pragmatic… Click to show full abstract

Electroreduction of N2 is a highly promising route for NH3 production. The lack of efficient catalysts that can activate and then reduce N2 into NH3 limits this as a pragmatic application. In this work, a 2D layered group IV-V material, silicon phosphide (SiP), is evaluated as a suitable substrate for the electrochemical nitrogen reduction reaction (ENRR). To capture N2, one phosphorus (P) defect was introduced on the plane of SiP. DFT calculations found that the defective SiP monolayer (D1-SiP, which is defined by the P-defect on SiP) exhibits enormous prospects towards the ENRR because of enhanced electron conductivity, good activation on N2, lower limiting potential (UL = -0.87 V) through the enzymatic pathway, smooth charge transfer between the catalyst and the reaction species, and robust thermal stability. Importantly, D1-SiP demonstrates the suppressed activities on producing of H2 and N2H4 side-products. This research demonstrates the potential of 2D metal-free Si-based catalysts for nitrogen fixation and further enriches the study of group IV-V materials for the ENRR.

Keywords: reaction; nitrogen reduction; reduction reaction; silicon phosphide; sip

Journal Title: Nanoscale
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.