LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A CoSe2-based 3D conductive network for high-performance potassium storage: enhancing charge transportation by encapsulation and restriction strategy

Photo by dulhiier from unsplash

Potassium-ion batteries (PIBs) are expected as a supplement for lithium-ion batteries (LIBs) due to the abundant potassium resource and low cost. However, the large radius of the potassium ion hinders… Click to show full abstract

Potassium-ion batteries (PIBs) are expected as a supplement for lithium-ion batteries (LIBs) due to the abundant potassium resource and low cost. However, the large radius of the potassium ion hinders the ion transport dynamics and structural stability of the electrode material. Herein, a sandwich-like CoSe2@NC/rGO composite is successfully synthesized by a two step co-precipitation and pyrolysis/selenization method. Taking full advantage of this unique 3D structure, the electronic conductivity of CoSe2@NC/rGO-5 is about 20 times higher than that of CoSe2@NC, and the specific surface area of CoSe2@NC/rGO-5 is about 6 times higher than that of CoSe2@NC, which provides sufficient reactive sites. Moreover, the empty space between graphene layers can effectively alleviate the volume expansion and prevent the peeling of the active material during cycling. As a consequence, the as-prepared CoSe2@NC/rGO-5 anode exhibits high reversible capacity (527.5 mA h g−1 at 0.1 A g−1), good cycle stability (226 mA h g−1 at 0.5 A g−1 after 400 cycles) and enhanced rate capability (206 and 157 mA h g−1 at 5 and 10 A g−1, respectively). A two-step reaction process from CoSe2 to K2CoSe2 to K2Se during discharging is confirmed by ex situ TEM and ex situ XPS. This work provides a facile approach to prepare high-performance electrodes with a 3D conductive network, and further deepens the understanding of the evolution of CoSe2 in the potassium storage process.

Keywords: potassium; conductive network; cose2 rgo; potassium storage; cose2; high performance

Journal Title: Materials Chemistry Frontiers
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.