LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Importance of water and intramolecular interaction governs substantial blue shift of Csp2–H stretching frequency in complexes between chalcogenoaldehydes and water

Photo by kotliarenko from unsplash

Geometrical structure, stability and cooperativity, and contribution of hydrogen bonds to the stability of complexes between chalcogenoaldehydes and water were thoroughly investigated using quantum chemical methods. The stability of the… Click to show full abstract

Geometrical structure, stability and cooperativity, and contribution of hydrogen bonds to the stability of complexes between chalcogenoaldehydes and water were thoroughly investigated using quantum chemical methods. The stability of the complexes increases significantly when one or more H2O molecules are added to the binary system, whereas it decreases sharply going from O to S, Se, or Te substitution. The O–H⋯O H-bond is twice as stable as Csp2–H⋯O and O–H⋯S/Se/Te H-bonds. It is found that a considerable blue-shift of Csp2–H stretching frequency in the Csp2–H⋯O H-bond is mainly determined by an addition of water into the complexes along with the low polarity of the Csp2–H covalent bond in formaldehyde and acetaldehyde. The Csp2–H stretching frequency shift as a function of net second hyperconjugative energy for the σ*(Csp2–H) antibonding orbital is observed. Remarkably, a considerable Csp2–H blue shift of 109 cm−1 has been reported for the first time. Upon the addition of H2O into the binary systems, halogenated complexes witness a decreasing magnitude of the Csp2–H stretching frequency blue-shift in the Csp2–H⋯O H-bond, whereas CH3-substituted complexes experience the opposite trend.

Keywords: water; csp2 stretching; blue shift; stretching frequency; csp2

Journal Title: RSC Advances
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.