LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Predicting hERG channel blockers with directed message passing neural networks

Photo by kellysikkema from unsplash

Compounds with human ether-à-go-go related gene (hERG) blockade activity may cause severe cardiotoxicity. Assessing the hERG liability in the early stages of the drug discovery process is important, and the… Click to show full abstract

Compounds with human ether-à-go-go related gene (hERG) blockade activity may cause severe cardiotoxicity. Assessing the hERG liability in the early stages of the drug discovery process is important, and the in silico methods for predicting hERG channel blockers are actively pursued. In the present study, the directed message passing neural network (D-MPNN) was applied to construct classification models for identifying hERG blockers based on diverse datasets. Several descriptors and fingerprints were tested along with the D-MPNN model. Among all these combinations, D-MPNN with the moe206 descriptors generated from MOE (D-MPNN + moe206) showed significantly improved performances. The AUC-ROC values of the D-MPNN + moe206 model reached 0.956 ± 0.005 under random split and 0.922 ± 0.015 under scaffold split on Cai's hERG dataset, respectively. Moreover, the comparisons between our models and several recently reported machine learning models were made based on various datasets. Our results indicated that the D-MPNN + moe206 model is among the best classification models. Overall, the excellent performance of the DMPNN + moe206 model achieved in this study highlights its potential application in the discovery of novel and effective hERG blockers.

Keywords: predicting herg; herg; message passing; channel blockers; directed message; herg channel

Journal Title: RSC Advances
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.