Fe3C modified by the incorporation of carbon materials offers excellent electrical conductivity and interfacial lithium storage, making it attractive as an anode material in lithium-ion batteries. In this work, we… Click to show full abstract
Fe3C modified by the incorporation of carbon materials offers excellent electrical conductivity and interfacial lithium storage, making it attractive as an anode material in lithium-ion batteries. In this work, we describe a time- and energy-saving approach for the large-scale preparation of Fe3C nanoparticles embedded in mesoporous carbon nanosheets (Fe3C-NPs@MCNSs) by solution combustion synthesis and subsequent carbothermal reduction. Fe3C nanoparticles with a diameter of ∼5 nm were highly crystallized and compactly dispersed in mesoporous carbon nanosheets with a pore-size distribution of 3–5 nm. Fe3C-NPs@MCNSs exhibited remarkable high-rate lithium storage performance with discharge specific capacities of 731, 647, 481, 402 and 363 mA h g−1 at current densities of 0.1, 1, 2, 5 and 10 A g−1, respectively, and when the current density reduced back to 0.1 A g−1 after 45 cycles, the discharge specific capacity could perfectly recover to 737 mA h g−1 without any loss. The unique structure could promote electron and Li-ion transfer, create highly accessible multi-channel reaction sites and buffer volume variation for enhanced cycling and good high-rate lithium storage performance.
               
Click one of the above tabs to view related content.