LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of a grape-like conductive carbon black/Ag hybrid as the conductive filler for soft silicone rubber

Photo by bastroloog from unsplash

Conductive silicone rubber (CSR) is an outstanding stretchable conductive composite due to its excellent mechanical properties and stable conductivity. In this paper, silver nanoparticles were deposited on carbon black (CB)… Click to show full abstract

Conductive silicone rubber (CSR) is an outstanding stretchable conductive composite due to its excellent mechanical properties and stable conductivity. In this paper, silver nanoparticles were deposited on carbon black (CB) through a reduction reaction. The uniform dispersion of silver particles on the surface of CB as well as the grape-like branch structure of hybrid particles was formed by the condensation reaction of the hydroxyl groups of CB with (3-mercaptopropyl) trimethoxysilane (KH-590), along with the interattraction between sulfhydryl groups of KH-590 and silver ions. This sulfhydryl modified conductive carbon black/Ag hybrid filler (SMCB@Ag) avoided the high processing viscosity of CSR caused by the hydroxyl groups of CB. The percolation threshold of CSR made from SMCB@Ag was 5.5 wt% according to the percolation equation. With the addition amount of SMCB@Ag increasing to 10 wt%, the conductivity of CSR increased from 10−5 to about 101. Moreover, the conductivity of this CSR showed excellent stability with extension of storage time and increase of stretching-recovery cycles.

Keywords: conductive carbon; silicone rubber; csr; carbon black; grape like

Journal Title: RSC Advances
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.