LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Single-pot tandem oxidative/C–H modification amidation process using ultrasmall PdNP-encapsulated porous organosilica nanotubes

Herein, we studied a single-pot method with a dual catalysis process towards the conversion of primary aromatic alcohols to amides using ultrasmall PdNPs of controlled uniform size (1.8 nm) inside… Click to show full abstract

Herein, we studied a single-pot method with a dual catalysis process towards the conversion of primary aromatic alcohols to amides using ultrasmall PdNPs of controlled uniform size (1.8 nm) inside hybrid mesoporous organosilica nanotubes (MO-NTs). The catalyst exhibited excellent performance in water under mild conditions and showed high stability. The catalytic activity towards the tandem oxidation of alcohols in the presence of amine salts and H2O2 to their corresponding amides without producing byproducts was evaluated, and high yields were obtained for all products. The structure of the organosilica nanotubes containing palladium nanoparticles was investigated using various characterization techniques such as XRD, TEM, BET, solid-state 29Si NMR and solid-state 13C CP MAS NMR. Catalyst recycling tests showed that the catalytic power of PdNPs@B-SNTs was preserved after 8 cycles and a slight decrease in catalyst activity was observed.

Keywords: process; organosilica nanotubes; using ultrasmall; single pot

Journal Title: RSC Advances
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.