LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrogenerated chemiluminescence of a Ru(bpy)32+/arginine system: a specific and sensitive detection of acetaminophen

Photo by anniespratt from unsplash

Ru(bpy)3Cl2/TPrA is a prominent and widely used ECL system in analytical science. However, the co-reactant TPrA restricts the variety of applications because of its toxicity, volatility, and high cost. Here,… Click to show full abstract

Ru(bpy)3Cl2/TPrA is a prominent and widely used ECL system in analytical science. However, the co-reactant TPrA restricts the variety of applications because of its toxicity, volatility, and high cost. Here, we use arginine (Arg) as an alternative co-reactant for Ru(bpy)32+ by taking advantage of its low cost, non-toxicity, and biocompatibility. The mechanism of the Ru(bpy)32+/Arg system is that the deprotonated Arg can react with Ru(bpy)32+ to release emission. The similarity between the Ru(bpy)32+/Arg, Ru(bpy)32+/TPrA, and Ru(bpy)32+/DBAE systems demonstrates that Arg can be used as an alternative co-reactant for Ru(bpy)32+ ECL. As a proof of concept, we achieve an excellent performance for acetaminophen (Ace) detection based on the specificity of Arg and Ace, with excellent linearity, low detection limits, and good recoveries. This work is promising to expand the scope of the Ru(bpy)32+/Arg system and move forward their applications in bioassays.

Keywords: system; bpy arg; electrogenerated chemiluminescence; detection; bpy

Journal Title: RSC Advances
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.