LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Zirconium-catalyzed asymmetric Kabachnik–Fields reactions of aromatic and aliphatic aldehydes

Photo by williamtm from unsplash

An effective catalyst has been developed for the three-component reaction of aldehydes, anilines and phosphites in an asymmetric catalytic Kabachnik–Fields reaction to give α-aminophosphonates. A catalyst was sought that would… Click to show full abstract

An effective catalyst has been developed for the three-component reaction of aldehydes, anilines and phosphites in an asymmetric catalytic Kabachnik–Fields reaction to give α-aminophosphonates. A catalyst was sought that would give high asymmetric inductions for aromatic and, and more particularly, for aliphatic aldehydes since there has not previously been an effective catalyst developed for this class of aldehydes. The optimal catalyst is prepared from three equivalents of the 7,7′-di-t-butylVANOL ligand, one equivalent of N-methylimidazole and one equivalent of zirconium tetraisopropoxide. This catalyst was most efficient in the presence of 10 mol% benzoic acid. Optimal conditions for aryl aldehydes required the use of 3,5-diisopropyl-2-hydroxyaniline and gave the aryl α-aminophosphonates in up to 96% yield and 98% ee over 11 different aryl aldehydes. The best aniline for aliphatic aldehydes was found to be 3-t-butyl-2-hydroxyaniline and gave the corresponding phosphonates in up to 83% yield and 97% ee over 18 examples. The asymmetric inductions for aliphatic aldehydes were comparable with those for aromatic aldehydes with a mean induction of 90% ee for the former and 91% ee for the latter. The best method for the liberation of the free amine from the aniline substituted α-aminophosphonates involved oxidation with N-iodosuccinimide.

Keywords: kabachnik fields; zirconium catalyzed; catalyst; aliphatic aldehydes

Journal Title: Chemical Science
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.