LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Promoting photocatalytic CO2 reduction through facile electronic modification of N-annulated perylene diimide rhenium bipyridine dyads

Photo by elevatebeer from unsplash

The development of CO2 conversion catalysts has become paramount in the effort to close the carbon loop. Herein, we report the synthesis, characterization, and photocatalytic CO2 reduction performance for a… Click to show full abstract

The development of CO2 conversion catalysts has become paramount in the effort to close the carbon loop. Herein, we report the synthesis, characterization, and photocatalytic CO2 reduction performance for a series of N-annulated perylene diimide (NPDI) tethered Re(bpy) supramolecular dyads [Re(bpy-C2-NPDI-R)], where R = –H, –Br, –CN, –NO2, –OPh, –NH2, or pyrrolidine (–NR2). The optoelectronic properties of these Re(bpy-C2-NPDI-R) dyads were heavily influenced by the nature of the R-group, resulting in significant differences in photocatalytic CO2 reduction performance. Although some R-groups (i.e. –Br and –OPh) did not influence the performance of CO2 photocatalysis (relative to –H; TONco ∼60), the use of an electron-withdrawing –CN was found to completely deactivate the catalyst (TONco < 1) while the use of an electron-donating –NH2 improved CO2 photocatalysis four-fold (TONco = 234). Despite being the strongest EWG, the –NO2 derivative exhibited good photocatalytic CO2 reduction abilities (TONco = 137). Using a combination of CV and UV-vis-nIR SEC, it was elucidated that the –NO2 derivative undergoes an in situ transformation to –NH2 under reducing conditions, thereby generating a more active catalyst that would account for the unexpected activity. A photocatalytic CO2 mechanism was proposed for these Re(bpy-C2-NPDI-R) dyads (based on molecular orbital descriptions), where it is rationalized that the photoexcitation pathway, as well as the electronic driving-force for NPDI2− to Re(bpy) electron-transfer both significantly influence photocatalytic CO2 reduction. These results help provide rational design principles for the future development of related supramolecular dyads.

Keywords: co2; photocatalytic co2; perylene diimide; annulated perylene; co2 reduction

Journal Title: Chemical Science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.