The decarbonylative-coupling reaction is generally promoted by transition metals (via organometallic complexes) or peroxides (via radical intermediates), often at high temperatures to facilitate the CO release. Herein, a visible-light-induced, transition… Click to show full abstract
The decarbonylative-coupling reaction is generally promoted by transition metals (via organometallic complexes) or peroxides (via radical intermediates), often at high temperatures to facilitate the CO release. Herein, a visible-light-induced, transition metal and external photosensitizer free decarbonylative addition of benzaldehydes to ketones/aldehydes at room temperature is reported. Tertiary/secondary alcohols were obtained in moderate to excellent yields promoted by using CsF under mild conditions. The detailed mechanistic investigation showed that the reaction proceeded through photoexcitation–decarbonylation of the aldehyde to generate an aromatic anion, followed by its addition to ketones/aldehydes. The reaction mechanism was verified by the density functional theory (DFT) calculations.
               
Click one of the above tabs to view related content.