Improving the electrical performance of macroradical epoxy thermosets to surpass the semiconductor threshold requires a comprehensive understanding of the electrical charge transport mechanisms and characteristics. In this study, we investigate… Click to show full abstract
Improving the electrical performance of macroradical epoxy thermosets to surpass the semiconductor threshold requires a comprehensive understanding of the electrical charge transport mechanisms and characteristics. In this study, we investigate the electrical properties of a non-conjugated radical thermoset in a rigid, three-dimensional (3D) motif cured under an external magnetic field. The outcomes of the four-angle analysis of the synchrotron IRM beamline provide for the first time quantitative insights into the molecular orientation at the atomic-scale level. These insights, in turn, were utilized to apply Quantum Computational modeling theories and Monte Carlo simulation to study the effect of the magnetic field-induced molecular alignment on tuning electrical charge transport characteristics. The results explored the impact of radical density on forming percolation networks, showing a robust protocol for designing polymers with high electrical/thermal conductivity.
               
Click one of the above tabs to view related content.