Layered two-dimensional (2D) materials have attracted considerable interest for their exotic and anisotropic electronic behavior. One such material, Sn4As3, bears a resemblance in both structure and elemental composition to two… Click to show full abstract
Layered two-dimensional (2D) materials have attracted considerable interest for their exotic and anisotropic electronic behavior. One such material, Sn4As3, bears a resemblance in both structure and elemental composition to two other Sn- and As-containing layered materials that have recently demonstrated axis-dependent conduction polarity: NaSn2As2 and NaSnAs. Here, a new family of Pb-alloyed PbxSn4−xAs3 crystals was synthesized and the axis-dependent electronic and thermoelectric properties were evaluated. Up to one full equivalent of Pb could be alloyed into PbxSn4−xAs3 (0 < x < 1.06) before phase separation occurred. We establish the structural changes and the trends in the Raman spectra with increasing Pb substitution. These materials all exhibit metallic temperature-dependent resistivities and positive thermopowers along the in-plane and cross-plane directions. The absence of axis-dependent conduction polarity in these SnAs-layered materials is consistent with theoretical predictions, and illustrates that precise control over the atomic and electronic structure and doping is essential for realizing this phenomenon in new materials.
               
Click one of the above tabs to view related content.