LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermoplastic zwitterionic elastomer with critical antifouling properties.

Photo by enginakyurt from unsplash

Thermoplastic elastomers are widely used in the medical industry for advanced medical and healthcare products, helping millions of patients achieve a better quality of life. Yet, microbial contamination and material-associated… Click to show full abstract

Thermoplastic elastomers are widely used in the medical industry for advanced medical and healthcare products, helping millions of patients achieve a better quality of life. Yet, microbial contamination and material-associated biofilms on devices remain a critical challenge because it is challenging for currently available materials to provide critical antifouling properties, thermoplasticity, and elastic properties simultaneously. We developed a highly flexible zwitterionic thermoplastic polyurethane with critical antifouling properties. A series of poly((diethanolamine ethyl acetate)-co-poly(tetrahydrofuran)-co-(1,6-diisocyanatohexane)) (PCB-PTHFUs) were synthesized. The PCB-PTHFUs exhibit a breaking strain of more than 400%, a high resistance to fibroblast cells for 24 h, and the excellent ability to prevent biofilm formation for up to three weeks. This study lays a foundation for clarifying the structure-function relationships of zwitterionic polymers. This thermoplastic PCB-PTHFU platform, with its unmatched antifouling properties and high elasticity, has potential for implanted medical devices and a broad spectrum of applications that suffer from biofouling, such as material-associated infection.

Keywords: critical antifouling; elastomer critical; zwitterionic elastomer; antifouling properties; thermoplastic zwitterionic

Journal Title: Biomaterials science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.