LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fatty acid-based polymeric micelles to ameliorate amyloidogenic disorders.

Photo by arthurlfranklin from unsplash

To develop anti-amyloidogenic inhibitors for ameliorating the treatment of diabetes, herein, we have synthesised amphiphilic block copolymers with side-chain fatty acid (FA) moieties via reversible addition fragmentation chain-transfer (RAFT) polymerization.… Click to show full abstract

To develop anti-amyloidogenic inhibitors for ameliorating the treatment of diabetes, herein, we have synthesised amphiphilic block copolymers with side-chain fatty acid (FA) moieties via reversible addition fragmentation chain-transfer (RAFT) polymerization. We addressed the unexplored role of FA pendants in the FA-tethered block copolymers (FABC) towards modulating the insulin fibrillation process with the aid of different biophysical techniques. Experimental findings established that FABC micelles can elongate the lag phase time to a greater extent and exhibit significant inhibitory potencies, with the more pronounced effect observed in stearic acid-based polymeric micelles (SABC475). Furthermore, conformational modulation using circular dichroism spectroscopic measurements demonstrates their potential role as effective inhibitors of insulin fibrils through reducing the β-sheet contents. Interestingly, the FABC micelles can also disintegrate the matured fibrils and effectively diminish the fibril induced toxicity. Hydrophobic interaction and hydrogen (H) bonding are the two major driving forces that are equally responsible for the almost complete prevention of insulin aggregated species. Theoretical simulation results further support our experimental observations in explaining the inhibitory rate of the insulin fibrillation process in the presence of different FABC micelles. Overall, we envision that the reported study will provide a novel path to develop a new class of anti-amyloid polymeric inhibitors.

Keywords: based polymeric; fabc micelles; micelles ameliorate; acid based; polymeric micelles; fatty acid

Journal Title: Biomaterials science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.