LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dendron-functionalised hyperbranched bis-MPA polyesters as efficient non-viral vectors for gene therapy in different cell lines.

Photo from wikipedia

Gene therapy has become a relevant tool in the biomedical field to treat or even prevent some diseases. The effective delivery of genetic material into the cell remains a crucial… Click to show full abstract

Gene therapy has become a relevant tool in the biomedical field to treat or even prevent some diseases. The effective delivery of genetic material into the cell remains a crucial step to succeed in this purpose. In the search for efficient non-viral vectors, a series of amino-terminated dendronized hyperbranched polymers (DHPs) of different generations based either on bis-MPA or bis-GMPA have been designed. All of them have demonstrated an accurate ability to complex two types of genetic materials, a plasmid DNA and a siGFP, yielding dendriplexes. Moreover, some of them have proved to be able to deliver the genetic material inside the cells, resulting in the effective accomplishment of the desired genetic modification and improving the activity of some commercial transfection reagents. Different cell lines, including cancer and mesenchymal stem cells, have been studied here to evaluate the ability of DHPs as vectors for transfection. Treatments based on mesenchymal stem cells are gaining importance due to their pluripotency. Thus, it is of special relevance to introduce a genetic modification into a mesenchymal cell line as it allows it to act over a wide spectrum of tissues after inducing cellular differentiation.

Keywords: non viral; cell; gene therapy; bis mpa; viral vectors; efficient non

Journal Title: Biomaterials science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.