LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Orally administrable polyphenol-based nanoparticles achieve anti-inflammation and antitumor treatment of colon diseases.

Photo by jontyson from unsplash

Colorectal cancer is the third most common malignancy that leads to significant mortality around the world. Chronic colonic inflammation could induce a protumor effect by the massive release of pro-inflammatory… Click to show full abstract

Colorectal cancer is the third most common malignancy that leads to significant mortality around the world. Chronic colonic inflammation could induce a protumor effect by the massive release of pro-inflammatory cytokines, facilitating migration, invasion, and metastasis of malignant cells in colorectal cancer. Therefore, developing a combination regimen of anti-inflammation and antitumor therapies is a promising strategy for the treatment of colorectal cancer. Here, we report that tannic acid-containing nanoparticles, formed by a turbulent-mixing technique, have exhibited uniform size, high stability, and pH-triggered drug release in the gastrointestinal tract, and could overcome intestinal mucosa for drug delivery in the colorectal region. As a drug carrier itself, with potent antioxidant and anti-inflammatory properties, tannic acid-containing nanoparticles showed great therapeutic effect in preventing the development of colitis-associated colorectal cancer (CAC) through oral administration. Furthermore, we used a therapeutic nanocarrier to deliver chemotherapeutic drugs for CAC treatment, generating lower systemic toxicity and superior antitumor performance through concurrent anti-inflammation and antitumor treatment. As a result, we confirmed that the drug carrier itself with therapeutic function could improve the overall therapeutic performance, and provided a safe and effective tannic acid-containing nanoplatform for the prevention and treatment of colon diseases.

Keywords: inflammation; inflammation antitumor; anti inflammation; colorectal cancer; treatment

Journal Title: Biomaterials science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.