LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A fish-scale derived multifunctional nanofiber membrane for infected wound healing.

Photo from wikipedia

The rapid development of modern medicine has put forward new requirements for wound infection healing methods in clinical treatment. Despite the great achievements made in the research and development of… Click to show full abstract

The rapid development of modern medicine has put forward new requirements for wound infection healing methods in clinical treatment. Despite the great achievements made in the research and development of various types of dressings in recent years, yet there is still a challenge of multifunctional dressings for effective wound treatment. Herein, a multifunctional nanofibrous membrane was prepared by encapsulating NIR-adsorbed CuS (FSC/CuS) nanoparticles, polyvinylpyrrolidone (PVP) and polyvinyl butyral (PVB) with electrospun fish scale collagen. During the evaluation of wound healing, four parameters, including hemostasis time, inflammatory response, cell proliferation, and tissue remodeling, were considered. The results of H&E, Masson and immunohistochemical staining showed that the synergistic effect of composite nanofibers and near-infrared light can inhibit the inflammatory response, promote the proliferation and migration of fibroblasts and keratinocytes, rebuild new tissues, form well-dispersed collagen fibers, etc. It was shown that the FSC/CuS NPs combined with an NIR-driven experimental group exhibited excellent performance in accelerating wound healing in these stages. This kind of nanofibrous scaffold prepared with fish scale and NIR-absorbing agents will have broad application prospects in the healing of infected wounds.

Keywords: wound healing; fish scale; derived multifunctional; scale derived; membrane

Journal Title: Biomaterials science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.