LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Recent developments in bismuth oxyhalide-based functional nanomaterials for biomedical applications.

Photo by joshuafernandez from unsplash

Multifunctional bismuth oxyhalide (BiOX, X = F, Cl, Br, and I) nanomaterials have great potential advantages in medical diagnostic and therapeutic applications. Pure BiOX nanomaterials have some limitations such as… Click to show full abstract

Multifunctional bismuth oxyhalide (BiOX, X = F, Cl, Br, and I) nanomaterials have great potential advantages in medical diagnostic and therapeutic applications. Pure BiOX nanomaterials have some limitations such as limited light absorption range, easy electron-hole recombination, and large nanoparticle size. It is widely assumed that proper functionalization of BiOX nanomaterials can compensate for these flaws and notably improve performance. Due to easy modification of the structures, the multi-functionalization of BiOX nanomaterials can be realized. These nanomaterials can be applied as sensitizers against tumor and bacterial proliferation, as well as contrast agents for computer tomography (CT) imaging, photoacoustic (PA) imaging, and other forms of imaging to provide real-time monitoring and detection guidance. Here, we summarize the methods for functionalizing BiOX nanomaterials and discuss the applications in biomedicine in the past few years, especially focusing on anticancer, antibacterial, and bioimaging. We also discuss how we can use these systems to inhibit and treat tumors, and how we can overcome current limitations to enhance therapeutic efficacy and imaging quality. We hope that this review can serve as inspiration and direction for the development of multifunctional BiOX nanomedicine platforms.

Keywords: oxyhalide based; biox; bismuth oxyhalide; biox nanomaterials; recent developments; developments bismuth

Journal Title: Biomaterials science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.