LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Twofold rattling mode-induced ultralow thermal conductivity in vacancy-ordered double perovskite Cs2SnI6.

Photo by hans_isaacson from unsplash

We report a first-principles study of lattice vibrations and thermal transport in Cs2SnI6, the vacancy-ordered double perovskite. Twofold rattlers of Cs atoms and SnI6 clusters in Cs2SnI6, being different from… Click to show full abstract

We report a first-principles study of lattice vibrations and thermal transport in Cs2SnI6, the vacancy-ordered double perovskite. Twofold rattlers of Cs atoms and SnI6 clusters in Cs2SnI6, being different from CsSnI3 with only Cs atom rattlers, largely scatter heat-carrying acoustic phonons strongly coupled with low-lying optical phonons and lower phonon group velocity. Using renormalized phonon dispersions at finite temperatures, we reveal that anharmonicity and twofold rattling modes induce an ultralow thermal conductivity at room temperature.

Keywords: twofold rattling; vacancy ordered; ordered double; ultralow thermal; thermal conductivity; double perovskite

Journal Title: Chemical communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.