LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reduced Mo-doped NiCo2O4 with rich oxygen vacancies as an advanced electrode material in supercapacitors.

Photo by brandi1 from unsplash

Reduced Mo-doped NiCo2O4 (R-Mo-NiCo2O4) was facilely prepared through a dual-defect strategy. Mo-doped NiCo layered double hydroxide (Mo-NiCo-LDH) was used as the precursor and calcined in an air atmosphere, and the… Click to show full abstract

Reduced Mo-doped NiCo2O4 (R-Mo-NiCo2O4) was facilely prepared through a dual-defect strategy. Mo-doped NiCo layered double hydroxide (Mo-NiCo-LDH) was used as the precursor and calcined in an air atmosphere, and the resultant Mo-doped NiCo2O4 (Mo-NiCo2O4) was further reduced by NaBH4. The number of oxygen vacancies in the obtained R-Mo-NiCo2O4 is significantly increased by both Mo doping and NaBH4 reduction, resulting in greatly enhanced electrical conductivity and facilitated charge transfer. Finally, the R-Mo-NiCo2O4 was used as the electrode material in supercapacitors, which displayed greatly improved electrochemical performance, such as higher specific capacity (285.8 mA h g-1 at 1 A g-1), rate capability (86.1%) and cycling stability (87.4% retention after 5000 cycles).

Keywords: material supercapacitors; doped nico2o4; electrode material; reduced doped; oxygen vacancies

Journal Title: Chemical communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.