LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A persistent radical anion derived from a propeller-shaped perylene bisimide-carbazole pentad.

Photo by alecs from unsplash

Stabilizing reactive radical ions promises outstanding performances in photocatalysis, organic optoelectronics and photothermal therapies, but it remains a challenge. In this contribution, we firstly report a persistent radical anion (PBI˙--4Cz)… Click to show full abstract

Stabilizing reactive radical ions promises outstanding performances in photocatalysis, organic optoelectronics and photothermal therapies, but it remains a challenge. In this contribution, we firstly report a persistent radical anion (PBI˙--4Cz) derived from a propeller-shaped electron-deficient perylene bisimide-based pentad (PBI-4Cz). Detailed investigations confirm that PBI˙--4Cz could intactly exist under inert conditions, and its lifetime is sufficiently prolonged up to more than one week under ambient atmosphere. Such exceptional stability is ascribed to the synergistic effect of the high electron-affinity and structural shielding originating from the compact spatial arrangement of PBI-4Cz. This work contributes to rational design and appropriate chemical construction of stable open-shell species.

Keywords: persistent radical; radical anion; derived propeller; propeller shaped; pbi 4cz; perylene bisimide

Journal Title: Chemical communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.