LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Polyurethane-gelatin methacryloyl hybrid ink for 3D printing of biocompatible and tough vascular networks.

Photo from wikipedia

A polyurethane-gelatin methacryloyl (PU-GelMA) hybrid ink was developed as a photo-crosslinkable elastic hydrogel. With the additional acrylic monomer, the ink can be tuned to accommodate elasticity and printability. Attributed to… Click to show full abstract

A polyurethane-gelatin methacryloyl (PU-GelMA) hybrid ink was developed as a photo-crosslinkable elastic hydrogel. With the additional acrylic monomer, the ink can be tuned to accommodate elasticity and printability. Attributed to the shear-thinning properties of GelMA, PU-GelMA was preferable for extrusion printing. 3D-constructs were printed by direct extrusion or by using a sacrificial scaffold to resemble the vascular networks. The proliferation of endothelial cells on the PU-GelMA hydrogel indicated decent biocompatibility and potential utilization in artificial vessels.

Keywords: polyurethane gelatin; vascular networks; ink; gelatin methacryloyl; hybrid ink

Journal Title: Chemical communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.