LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultrathin RhCuAgPd/Pd nanowire heterostructures for ethylene glycol electrooxidation.

Ultrathin RhCuAgPd/Pd nanowire heterostructures were prepared by a seed-mediated growth method. Due to the synergistic structural (including ultrathin NWs and interfaces) and compositional (Pd, Rh, Cu and Ag) advantages, the… Click to show full abstract

Ultrathin RhCuAgPd/Pd nanowire heterostructures were prepared by a seed-mediated growth method. Due to the synergistic structural (including ultrathin NWs and interfaces) and compositional (Pd, Rh, Cu and Ag) advantages, the RhCuAgPd/Pd NWs exhibit superior electrocatalytic performance toward ethylene glycol oxidation under alkaline conditions, including high mass activity (6.63 A mgPd-1), fine stability/durability and resistance to CO poisoning, favourable electrocatalytic kinetics and low activation energy values (18.64 kJ mol-1).

Keywords: rhcuagpd nanowire; ethylene glycol; nanowire heterostructures; ultrathin rhcuagpd

Journal Title: Chemical communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.