LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Coupling electrochemical H2O2 production and the in situ selective oxidation of organics over a bifunctional TS-1@Co-N-C catalyst.

Photo from wikipedia

A core-shell TS-1@Co-N-C was prepared by thermally pyrolyzing polydopamine and cobalt acetate outside TS-1 crystals. The Co-N-C shell catalyzes the electrochemical oxygen reduction to hydrogen peroxide (H2O2), while the TS-1… Click to show full abstract

A core-shell TS-1@Co-N-C was prepared by thermally pyrolyzing polydopamine and cobalt acetate outside TS-1 crystals. The Co-N-C shell catalyzes the electrochemical oxygen reduction to hydrogen peroxide (H2O2), while the TS-1 core catalyzes the oxidation of organic reagents. It achieved a H2O2 selectivity higher than 95% without organics, and accomplished an excellent bisphenol selectivity of 99.45% when coupled with phenol oxidation. Moreover, paired oxidation of furfural at both cathodic and anodic sides further led to an overall Faradaic efficiency of 141.09%. This bifunctional catalyst helps to integrate the in situ generation and usage of H2O2 into a single electrode, thus reduces the equipment and operating costs.

Keywords: oxidation; coupling electrochemical; bifunctional catalyst; h2o2; electrochemical h2o2

Journal Title: Chemical communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.