LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chemical control over the conversion between bicyclic and polycyclic terpenes by fungal bifunctional terpene synthases.

Photo by ultralinx from unsplash

Fungal bifunctional terpene synthases (BFTSs) reportedly associate with a series of new skeletons of di/sesterterpenes. However, the molecular mechanisms underlying the variabilities in the ring system of BFTS-catalyzed products are… Click to show full abstract

Fungal bifunctional terpene synthases (BFTSs) reportedly associate with a series of new skeletons of di/sesterterpenes. However, the molecular mechanisms underlying the variabilities in the ring system of BFTS-catalyzed products are not well understood. In this study, we identified a key site, S89/L89, that controls the conversion between bicyclic and polycyclic terpene skeletons catalyzed by two BFTSs, BsPS and FoFS. Our analysis revealed that a mutation on site 89 in the BFTSs alters the carbocation transportation pathway and redirects the competing reactions for previously unreported terpenes.

Keywords: bifunctional terpene; conversion bicyclic; terpene; bicyclic polycyclic; fungal bifunctional; terpene synthases

Journal Title: Chemical communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.