LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Visible-light driven 3-hydroxybutyrate synthesis from CO2 and acetone with the hybrid system of photocatalytic NADH regeneration and multi-biocatalysts.

Photo from wikipedia

Poly-3-hydroxybutyrate (PHB)-derived plastics are polymer materials with excellent biodegradability, being insoluble in water and relatively resistant to hydrolysis. There is a need for a method capable of synthesizing 3-hydroxybutyrate, a… Click to show full abstract

Poly-3-hydroxybutyrate (PHB)-derived plastics are polymer materials with excellent biodegradability, being insoluble in water and relatively resistant to hydrolysis. There is a need for a method capable of synthesizing 3-hydroxybutyrate, a monomer of PHB, from a renewable material. In this work, visible-light driven 3-hydroxybutyrate from CO2 and acetone with the system consisting of triethanolamine, water-soluble zinc porphyrin, pentamethylcyclopentadienyl coordinated rhodium complex, NAD+ and a cell extract containing acetone carboxylase and 3-hydroxybutyrate dehydrogenase from Rhodobacter capsulatus SB1003 cultured in acetone-bicarbonate medium is established. In particular, the conversion yield for acetone to 3-hydroxybutyrate was improved up to 81% in this system after 7 h irradiation.

Keywords: system; driven hydroxybutyrate; acetone; hydroxybutyrate; visible light; light driven

Journal Title: Chemical communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.